A sharpening of Fisher's inequality
نویسندگان
چکیده
Frankl, P. and Z. Filredi, A sharpening of Fisher’s inequality, Discrete Mathematics 90 (1991) 103-107. It is proved that in every linear space on v points and b lines the number of intersecting line-pairs is at least (z). This clearly implies b 2 v.
منابع مشابه
The Sharpening of Some Inequalities via Abstract Convexity
One of the application areas of abstract convexity is inequality theory. In this work, the authors seek to derive new inequalities by sharpening well-known inequalities by the use of abstract convexity. Cauchy-Schwarz inequality, Minkowski inequality and well-known mean inequalities are studied in this sense, concrete results are obtained for some of them. Mathematics subject classification (20...
متن کاملSharpening and Generalizations of Carlson’s Inequality for the Arc Cosine Function
In this paper, we sharpen and generalize Carlson’s double inequality for the arc cosine function.
متن کاملConcise Sharpening and Generalizations of Shafer’s Inequality for the Arc Sine Function
In this paper, by a concise and elementary approach, we sharpen and generalize Shafer’s inequality for the arc sine function, and some known results are extended and generalized.
متن کاملSome remarks on weighted logarithmic Sobolev inequality
We give here a simple proof of weighted logarithmic Sobolev inequality, for example for Cauchy type measures, with optimal weight, sharpening results of BobkovLedoux [12]. Some consequences are also discussed.
متن کاملSharpening and Generalizations of Carlson’s Double Inequality for the Arc Cosine Function
In this paper, we sharpen and generalize Carlson's double inequality for the arc cosine function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 90 شماره
صفحات -
تاریخ انتشار 1991